DOE/OE Transmission Reliability Program

Application of VARPRO Ambient Mode Estimation

Bernie Lesieutre

University of Wisconsin/LBNL BCLesieutre@lbl.gov June 10-11, 2015 Washington, DC

VAPRO Project Summary

Overall project objective

Detect and Analyze Oscillations in Power System Data

Looking Back:

- Ringdown VARPRO: Tech Transfer to PowerWorld
- Ringdown VARPRO: CERTS Tool Available/Matlab
- Ringdown VARPRO: Routinely used by BPA Engineers
- Ambient VARPRO: Introduced a method for application of VARPRO to Ambient Data analysis.
- Ambient VARPRO: Initial Studies on brake data demonstrate promise.

Publications:

- Borden, A.R., Lesieutre, B.C.; "Variable Projection Method for Power System Modal Identification," *IEEE Transactions on Power Systems*, Vol. 29, No. 6, pp. 2613-2620, November 2014.
- Lesieutre, B.C., "Application of VARPRO to Ambient Mode Estimation" draft report prepared. Final report August 2015.

Topics to Address

Looking Forward:

- Apply method to new data datasets.
- Develop additions to assess the quality of estimates (error bars).
- Implement algorithms in BPA facility
- Risk Factors: Data Availability

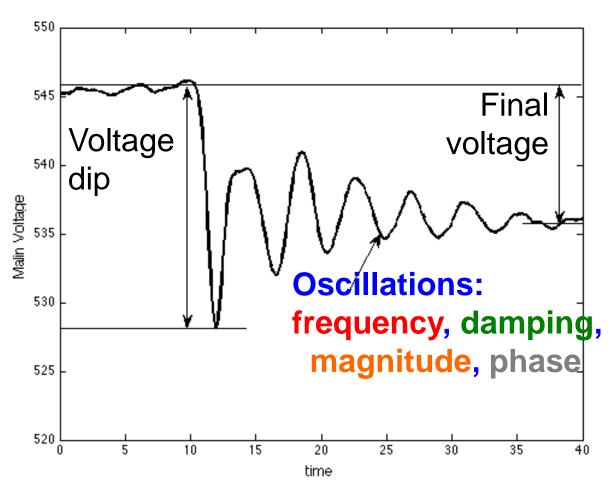
Presentation:

Review VAPRO Algorithm for Analysis of Oscillations

Present Approach to analyze ambient data

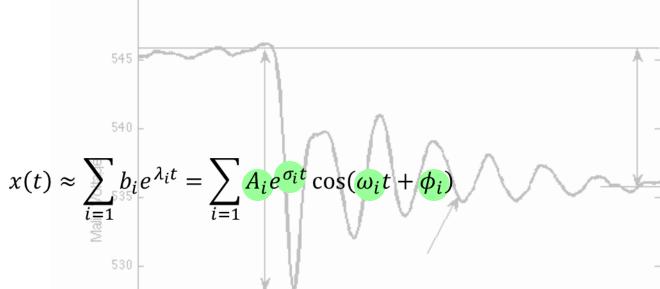
Present initial results of analysis of ambient data

Review: Ringdown Analysis



Review: Ringdown Analysis

Fit data to (un)damped sinusoids



Two Approaches:

Model Fitting (Prony and variants)
Curve Fitting (FFT, Polynomial, VARPRO)

Review: Model Fitting

Many approaches use a three-stage process:

- 1. Use correlations in data to construct a linear system model. $y[n] = \alpha_1 y[n-1] + \cdots + \alpha_N y[n-N]$
- 2. Calculate natural modes of model. Roots of

$$0 = -z^N + \alpha_1 z^{N-1} + \dots + \alpha_N$$

1. Calculate corresponding coefficients to match data.

$$y[n] = r_1 z_1^n + \cdots + r_N z_N^n$$

Advantage: Each step involves a **FAST** linear calculation.

Disadvantage: It is not curve fitting, and it has issues...

Curve Fitting

Fit data to (un)damped sinusoids

$$x(t) \approx \sum_{i=1}^{\infty} b_i e^{\lambda_i t} = \sum_{i=1}^{\infty} A_i e^{\sigma_i t} \cos(\omega_i t + \phi_i)$$

- Frequency $\omega_i \left[\frac{rad}{sec} \right]$ Damping $\sigma_i \left[\frac{rad}{sec} \right]$

Mode

Shapes

- Amplitude A_i Phase φ_i [rad]

$$\min_{A_i, \sigma_i, \omega_i, \phi_i} \left\| x(t) - \sum_i A_i e^{\sigma_i t} \cos(\omega_i t + \phi_i) \right\|_2$$

Curve Fitting: Nonlinear Method

$$\alpha = [\alpha_1, ..., \alpha_p]$$

Optimization variables (damping & frequencies)

$$\Phi(\alpha) = \left[\phi_1(\alpha)\;,\;\dots\;,\phi_n(\alpha)\right]$$

Basis functions (sinusoids, exponentials, polynomial (trend))

$$\hat{y}(\alpha) = \Phi(\alpha)b$$

$$\hat{y}(\alpha) = \Phi(\alpha)b$$
 $r(\alpha) = y - \hat{y}(\alpha) \implies b = \Phi(\alpha)^{\dagger}y$

$$\min_{\alpha} \frac{1}{2} \| r(\alpha) \|_{2}^{2} = \min_{\alpha} \frac{1}{2} \| (I - \Phi(\alpha) \Phi(\alpha)^{\dagger}) y \|_{2}^{2}$$

- Variable Projection Method
 - "The Differentiation of Pseudo-Inverses and Nonlinear Least Squares Problems Whose Variables Separate," Golub and Pereyra (1973)

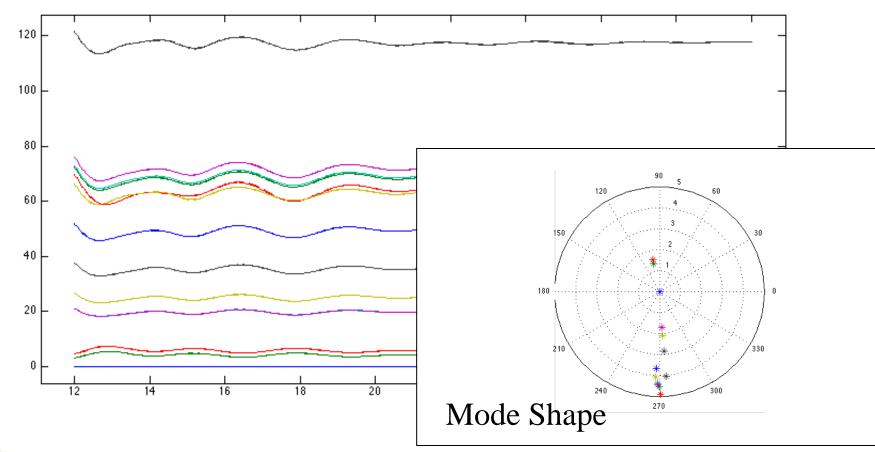
$$\nabla \frac{1}{2} \| r(\alpha) \|_2^2 = J^T r(\alpha)$$

Gradient:
$$\nabla \frac{1}{2} \| r(\alpha) \|_2^2 = J^T r(\alpha)$$
 $J = \left[\frac{\partial r(\alpha)}{\partial \alpha_1} \dots \frac{\partial r(\alpha)}{\partial \alpha_p} \right]$

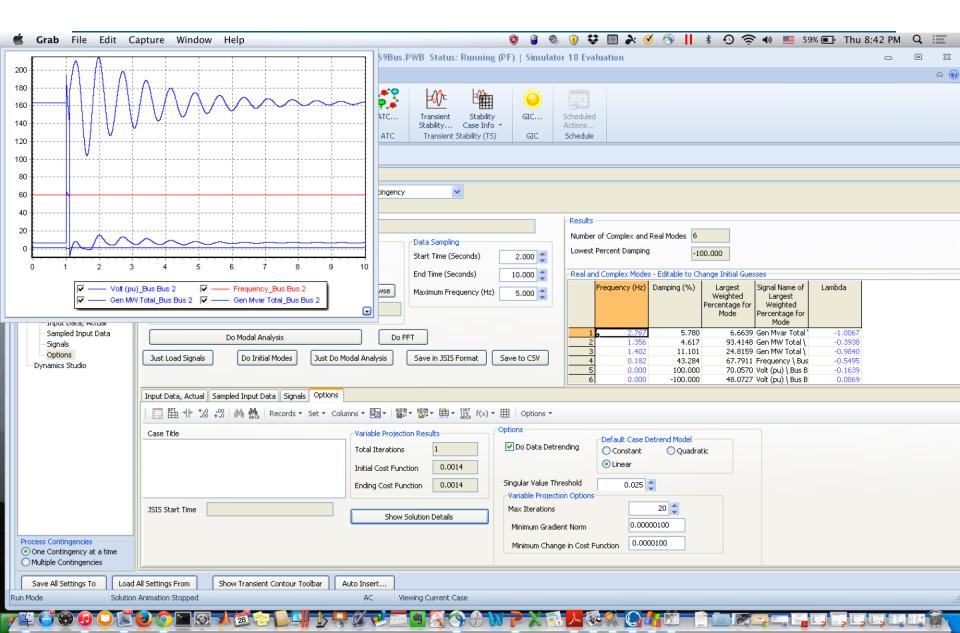
$$\frac{\partial r(\alpha)}{\partial \alpha_{i}} = - \left[\left(P^{\perp} \frac{\partial \Phi(\alpha)}{\partial \alpha_{i}} \Phi(\alpha)^{-} \right) + \left(P^{\perp} \frac{\partial \Phi(\alpha)}{\partial \alpha_{i}} \Phi(\alpha)^{-} \right)^{\mathrm{T}} \right] y \underline{\hspace{1cm}} P^{\perp} = I - \Phi(\alpha) \Phi^{\dagger}(\alpha) \underbrace{\hspace{1cm}}_{\text{TY TECHNOLOGY SOLUTION SOLUTIO$$

Sample Results

Compare data and Ringdown Tool fit.

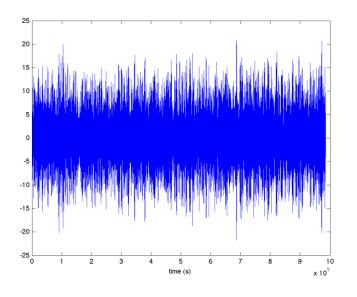


PowerWorld Transient Simulator



Ambient Data Analysis

 The goal of this work is to estimate oscillatory modes by examining ambient (noisy) data.

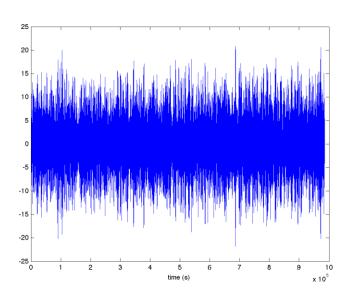


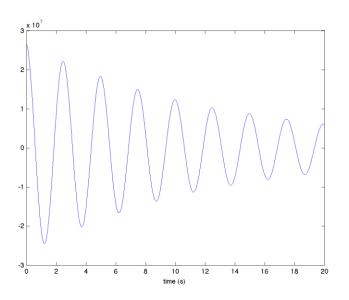
Illustrative Example (simulation)

How can we estimate modes from this data? Using curve fitting?

Ambient Data Analysis

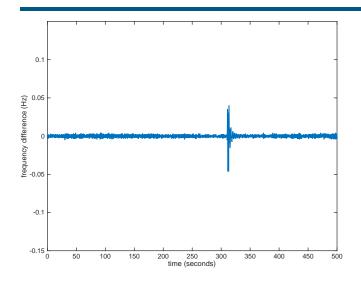
 Calculate Sample Autocorrelation. Perform curve fitting (VARPRO) on this.

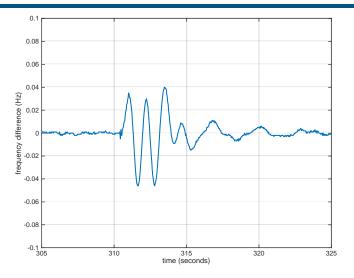




Modal frequency and damping correctly identified: 0.4 Hz at 3% damping. (0.4002 Hz and 2.98% calculated)

PMU Data Analysis: Ringdown



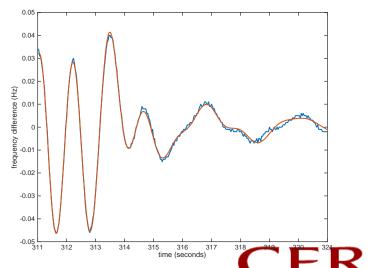


Ringdown Analysis (varpro)

0.32 Hz @ 9% damping

0.67 Hz @ 13 % damping

0.87 Hz @ 10 % damping



Ambient Data

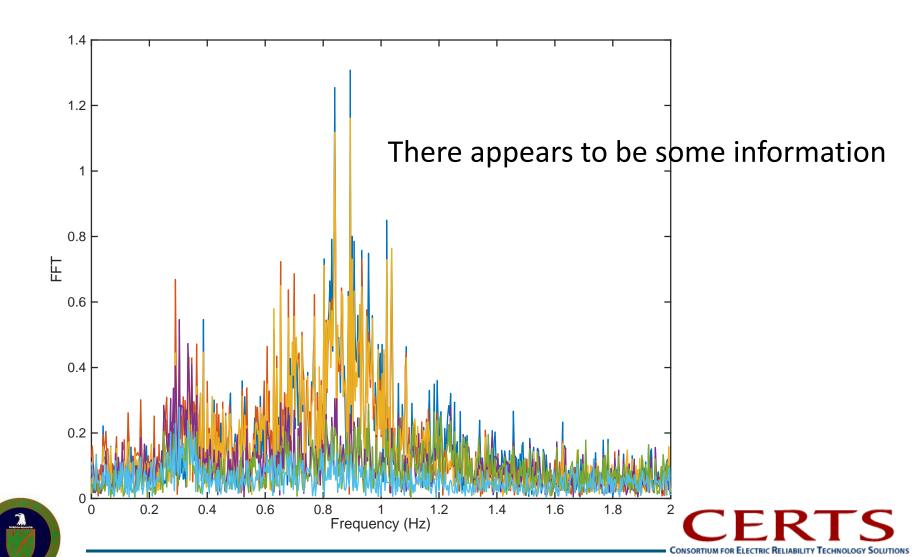
Use five minutes of data prior to disturbance to estimate modes:

Is there any information there? (FFT)

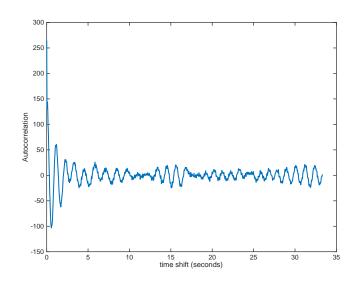
Estimate modes using

- Yule-Walker (model fitting)
- Varpro analysis of sample autocorrelations (curve fitting)

Ambient Data: FFT

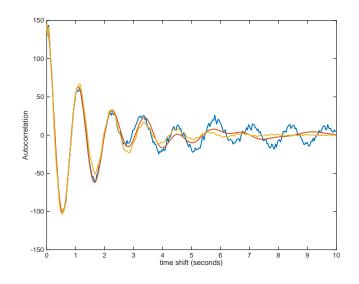


Autocorrelation Fit (Varpro)



Ringdown Analysis (varpro)

0.32 Hz @ 8% damping1.20 Hz @ 7 % damping0.87 Hz @ 11 % damping



Decent fit at start.

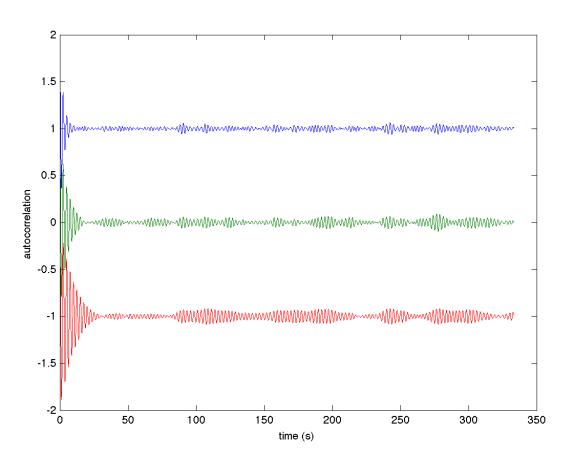
Yule-Walker

0.89 Hz @ 12 % damping

+ others

Promising start ...

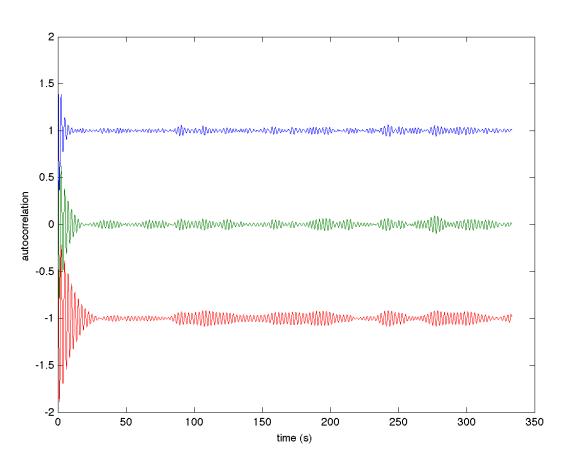
Autocorrelation Steady-State Metric



Autocorrelation of three systems with different dampings: 16%, 8%, and 4%.

Qualitatively, the effects of damping are noticeable in the steady state characteristic.

Autocorrelation Steady-State Metric



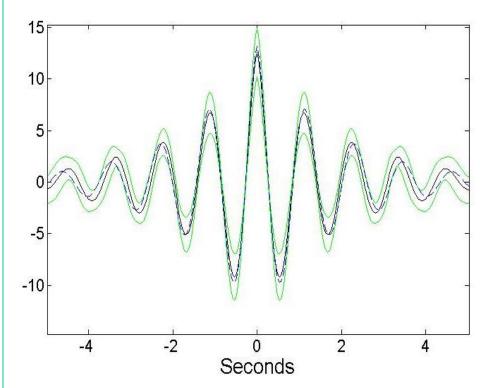
Consider using this information:

- A. Calibrate to known damping characteristics to estimate damping.
- A. Introduce new metric related to steady-state autocorrelation characteristic.

Data-Based Error Bounds

- Goal: find error bounds on modal-parameter estimates.
- Why?
 - Give confidence intervals.
 - Understand how much ambient data is needed.
 - Adapt algorithm as needed.
- How?
 - Data-only approach:
 - 1. Find error statistics for the sample autocorrelation.
 - 2. Bound estimates as found by curve-fitting algorithm

• Example based on synthetic data.



damping-ratio estimate: $(10 \pm 1.1)\%$

Research for 2015/2016

- 1. Analyze more data sets. BPA brake data
- 2. Examine information in steady-state sample autocorrelation curve.
- Statistical Error Analysis: to estimate error bounds on estimates. Work in cooperation with Sandip Roy of Washington State University.
- 4. Implement Algorithms in BPA on-line test facility.

